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Abstract

A series of allenic tosylamides have been prepared and shown to undergo palladium(II)-catalyzed cyclization
in the presence of lithium bromide and a copper(II) salt to give pyrrolidines. Palladium-catalyzed 1,2-oxidation of
allenic lactams in the presence of LiBr andp-benzoquinone was also studied. © 2000 Elsevier Science Ltd. All
rights reserved.
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Palladium–catalyzed reactions of unsaturated hydrocarbons have been extensively studied and a large
number of selective organic transformations have been reported.1 In addition to dienes, acetylenes and
olefins, allenes have in particular attracted considerable interest in recent years.2–7 We have recently
developed mild procedures for palladium-catalyzed 1,2-oxidation of allenes.7 These reactions are carried
out in acetic acid with palladium acetate as the catalyst andp-benzoquinone as the oxidant in the presence
of two nucleophiles, which are added across the double bond. Nucleophiles that have been used so far
include halides,7a carboxylates,7b and alcohols.7c It would be of great synthetic interest to extend these
1,2-oxidations to other nucleophiles such as carbon and nitrogen nucleophiles. In this communication we
report on the use of nitrogen nucleophiles in the palladium-catalyzed 1,2-oxidation of allenes.

Palladium-catalyzed oxidation of allenic tosylamide18 in acetic acid employingp-benzoquinone as the
oxidant and LiBr as the external nucleophile afforded only recovered starting material and no pyrrolidine
2 could be detected (Eq. (1)). Apparently, the amide nitrogen cannot act as a nucleophile under the
slightly acidic conditions employed here.

(1)

Sincep-benzoquinone requires acidic reaction conditions to work as an oxidant, alternative oxidants
were examined. Thus, allenic tosylamide1 was reacted with LiBr and Pd(OAc)2 in THF using CuCl2
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as the reoxidant, which afforded the corresponding pyrrolidine2 in 30% yield. In order to optimize
the reaction conditions other solvents (CH2Cl2, CH3CN, acetone, ethanol, DMF) were tried, of which
acetonitrile gave the best results. The yield was further improved by using one equivalent of base.
However, the use of CuCl2 as an oxidant gave rise to ca. 4% of a side product, resulting from attack
of a chloride on the middle allene carbon instead of a bromide. To eliminate this side product, other
oxidants (CuBr2, Cu(OTf)2, Cu(OAc)2) were screened. The use of Cu(OAc)2 gave the best result. Thus,
reaction of allenic tosylamide1 with LiBr, K 2CO3 and Cu(OAc)2 in the presence of a catalytic amount
of Pd(OAc)2 in acetonitrile under an O2 atmosphere afforded the desired pyrrolidine2 in 72% yield, with
mainlyZ stereochemistry (Z:E=93:7). The stereochemical assignment was made by NOE measurements.
A few otherN-tosylamides3, 5, 7, 9 and118 were also shown to cyclize under the palladium-catalyzed
conditions (Table 1) affording the corresponding pyrrolidines4, 6, 8, 10 and12, respectively, in good
isolated yields.11 The non-substituted allenic amide11 did, however, work better with Cu(OTf)2 as
an oxidant and the disubstituted allenic amides7 and 9 worked best in the presence of CuCl2. The
disubstituted allenes did not show the side product resulting from chloride attack.

Table 1
Palladium-catalyzed 1,2-oxidation of substituted allenic tosylamidesa

A likely mechanism for the palladium-catalyzed intramolecular oxidation is given in Eq. (2). Coordi-
nation of the allene1 to palladium and subsequent bromide attack at the central allenic carbon produces
a�-allyl palladium intermediate13, which undergoes an intramolecular nucleophilic attack to give the
pyrrolidine product2 and Pd(0). The copper(II) salt reoxidizes the Pd(0) back to Pd(II).
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(2)

In most palladium-catalyzed reactions with allenes, nucleophiles (such as nitrogen and oxygen nucleo-
philes) attack one of the terminalsp2–carbon atoms.9 However, some unexpected regioselectivity was
recently observed in an intramolecular palladium(0)-catalyzed reaction. Thus, a lactam nitrogen atom,
with a two-carbon tether between the allene and the nitrogen atom, reacted at the middlesp-carbon of the
allene to form five-membered ring enamides.10 It was, therefore, of interest to study these compounds in
the present palladium(II)-catalyzed 1,2-oxidations. The allenic lactams were prepared using a copper(I)-
mediated displacement of propargylic tosylates with the zinc reagent of the corresponding lactam to
afford different substituted allenes in moderate yields.10b

Allenic lactam 14 was subjected to the previously developed cyclization conditions withp-
benzoquinone as the reoxidant,7 which gave the 1,2-dibromo product16 as an 8:1 mixture of double
bond isomers (Scheme 1). No cyclic enamide product could be detected. To find out if there was any
steric influence on the outcome of the reaction, the allenic lactam was substituted with at-butyl group
(15). This did not give rise to nitrogen atom attack at the middlesp-carbon but instead the two products
17 and1812 were isolated. Here, a nitrogen attack had occurred at the terminalsp2-carbon, probably via
an intramolecular attack on the intermediate (�-allyl)palladium complex. Interestingly, subjecting the
TBDMS (t-butyldimethylsilyl) substituted allene19 to the same reaction conditions led to product20 in
which the nitrogen had indeed attacked the centralsp-carbon (Scheme 1). The TBDMS group increases
the electrophilicity of thesp-carbon making it easier for the nitrogen atom to attack.

Scheme 1.

The difference between14 and15 in the palladium-catalyzed oxidation can be explained from the
equilibrium between the (�-allyl)palladium complexesA andB (Scheme 2). A large substituent in the
C-3 position of the allene is expected to shift the equilibrium towards�-allyl complexB, whereas with a
small substituent (R=H),A should predominate. Thus, after the first bromide attack at C-2,14would give
mainly�-allyl complexA, whereas15would give�-allyl complexB. The latter complex is required for
intramolecular attack by nitrogen at C-1.

Scheme 2.
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